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Abstract

Background: Clustering is a popular data exploration technique widely used in microarray data analysis. Most

conventional clustering algorithms, however, generate only one set of clusters independent of the biological

context of the analysis. This is often inadequate to explore data from different biological perspectives and gain

new insights. We propose a new clustering model that can generate multiple versions of different clusters from a

single dataset, each of which highlights a different aspect of the given dataset.

Results: By applying our SigCalc algorithm to three yeast Saccharomyces cerevisiae datasets we show two

results. First, we show that different sets of clusters can be generated from the same dataset using different sets

of landmark genes. Each set of clusters groups genes differently and reveals new biological associations between

genes that were not apparent from clustering the original microarray expression data. Second, we show that

many of these new found biological associations are common across datasets. These results also provide strong

evidence of a link between the choice of landmark genes and the new biological associations found in gene

clusters.

Conclusions: We have used the SigCalc algorithm to project the microarray data onto a completely new

subspace whose co-ordinates are genes (called landmark genes), known to belong to a Biological Process. The
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projected space is not a true vector space in mathematical terms. However, we use the term subspace to refer to

one of virtually infinite numbers of projected spaces that our proposed method can produce. By changing the

biological process and thus the landmark genes, we can change this subspace. We have shown how clustering on

this subspace reveals new, biologically meaningful clusters which were not evident in the clusters generated by

conventional methods. The R scripts (source code) are freely available under the GPL license. The source code

is available [see Additional File 1] as additional material, and the latest version can be obtained at

www4.ncsu.edu/∼pchopra/landmarks.html. The code is under active development to incorporate new clustering

methods and analysis.

Background

Microarrays have enabled scientists to monitor the activities of thousands of genes simultaneously.

Clustering methods provide a useful technique for exploratory analysis of microarray data since they group

genes with similar expression patterns together. It is believed that genes that display similar expression

patterns are often involved in similar functions. Various clustering techniques have been proposed [1, 2].

Some of the popular techniques for clustering genes employ k-means [3], hierarchical clustering [4],

self-organizing maps [5] or some of their variants. Although clustering is a data exploration tool, there is a

shortage of clustering algorithms that enable the exploration of a dataset from multiple different biological

perspectives. Most of these conventional clustering algorithms generate only one set of clusters, thus

forcing a very restricted view of gene associations. They leave little room for data exploration and

re-interpretation of existing data. It would be difficult to interpret the complex biological regulatory

mechanisms and genetic interactions from this restrictive interpretation of microarray expression data.

In this paper we show that biologically meaningful gene clusters can be developed with our gene signature

algorithm SigCalc. Our algorithm uses elements of subspace projection, along with existing knowledge on

gene associations to come up with multiple new cluster sets. We show that each of these new cluster sets

reveal biological associations that were not apparent from clustering the original gene expression data. The

proposed method is fundamentally different from the conventional subspace clustering methods in that it

projects the original expression data into a different information space where genes are described in relative

terms against a chosen subset of genes called landmarks.
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Random Projection

Random projection is one of the dimensionality reduction techniques that is useful for eliminating features

that may be irrelevant. The high dimensionality data is projected onto a smaller random subspace.

Random projections and subspaces have been extensively used in data mining. They have been used to

reduce dimensionality and search for similarity in clustering [6, 7] and for information retrieval [8]. Some of

the application areas include classification [9], image processing [10], and other machine learning

topics [11, 12]. The key difference between our method and other random projection methods is that we

project our data onto a known set of genes that are functionally related, whereas in other methods,

random points are chosen for the subspace.

Subspace Clustering

Subspace clustering or biclustering [13, 14], has been a popular method for analyzing microarray datasets.

The main idea of subspace clustering is to find a subset of genes and a subset of conditions under which

these genes exhibit a similar trend. The major differences between the subspace clustering and the method

proposed in this paper are: (1) The subspace clusters are static; whereas, our framework provides a tool for

users to choose landmark genes, and then to analyze the dataset based on these landmark genes. (2)

Unlike the subspace clusters, the clusters generated from our method using the same landmarks are

comparable across different datasets.

Semi-supervised Clustering

Semi-supervised clustering [15–17] uses existing domain knowledge to guide the clustering process. One

popular method is constraint based clustering, where pairwise constraints (i.e ’must-link’ and ’cannot-link’

pairs) guide the clustering. The objective function of the underlying clustering algorithm is modified to

accomodate these constraints. Our method differs from this clustering method as it does not constrain all

the landmark genes to belong to one cluster. In our biological context, it is not unusual for genes to have

more than one function.

Gene Ontology

Gene Ontology (GO) is a collection of controlled vocabularies that describe the biology of a gene

product [18]. It consists of approximately 20,000 terms arranged in three independent ontologies:

Biological Process, Cellular Component, and Molecular function, each represented by a directed acyclic
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graph (DAG). Gene Ontology has proven to be very important for secondary analysis of microarray

expression data [19], and a wide range of tools have been developed to aid in this analysis. A

comprehensive analysis of the available tools is given by Khatri [20]. Some of the prominent ones are

ontoTools [21], GOminer [22], and GOstat [23].

In this paper we use the Biological Process ontology. A Biological Process (BP) is defined as “A

phenomenon marked by changes that lead to a particular result, mediated by one or more gene products”.

As of 2006, there were approximately 10,000 GO terms associated with Biological Process [24]. We use

Gene Ontology to provide external validation for the clusters. We use statistical significance tests to

determine if the genes in a cluster belong to a specific Biological Process. A biologically meaningful cluster

would consist of many genes that are annotated to a specific GO term.

Results and Discussion
Results

In the gene signature model, genes are points in a projected subspace whose coordinates are the landmark

genes. The gene signature consists of relative distance to these landmark genes. So, by changing the

landmark genes, a different perspective of the subspace can be obtained. Even using the same clustering

algorithm, we can get different sets of clusters by changing this subspace. We repeated gene signature

clustering for several biological processes (i.e., we used several different sets of landmark genes). The

details for the overlapping GO terms and the unique GO terms, using different biological processes as

landmarks for the Spellman dataset are shown in Table 1 (see Additional File 2 for DeRisi dataset).

We analyzed genes in some of the clusters that produced the unique GO terms. These genes, annotated to

the same GO term, clustered together when gene signatures were used, but did not cluster together when

the original microarray data was used. Some of these genes are shown in Figures 1 and 2.

As illustrated, the gene expression patterns do not appear to be highly correlated, while the gene

signatures show a strong correlation. For example, in the Gasch dataset, eight genes all relating to the GO

term multi-organism process (GO:0051704), were in one cluster when gene signatures (with electron

transport as landmark) were used. These genes did not cluster together with the original microarray data.

Similarly, the six genes YGL170C, YGR221C, YJL157C, YLL021W, YNL145W and YOR242C, associated

with reproduction (GO:0000003), only clustered together when gene signatures (with protein

ubiquitination) were used. Although the biological significance between the landmark genes and the new

GO term discovered is not immediately clear in this case, there might be some inherent relationships
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between them that are worth further investigation. Nonetheless, there were many other GO terms

discovered using signatures (but not with the original expression data) whose associations with signature

terms are much clearer. Some of these terms are investigated in detail in the discussion section.

In order to test the effect of the number of clusters on the number of unique GO terms discovered for each

landmark, we performed an experiment varying the numbers of clusters from 20 to 140. The results are

shown in Figure 3. These indicate that there are a substantial number of unique GO terms for each set of

landmark genes, that are largely independent of the number of clusters.

Next, we compared the unique GO terms from two datasets for different landmark genes. Table 2 shows

details of this comparison for three datasets taken two at a time. For example, the first and second column

indicate the number of unique GO terms found for the Spellman and the Gasch datasets. The third

column indicates the number of unique GO terms that were common between the Spellman and the Gasch

datasets, and the p-value associated with this. In effect, this indicates the number of significant GO terms

found in both datasets, by clustering of gene signatures, that were not found in the original clustering of

either of the two datasets. Similarly, Table 3 shows the comparison when SOM was used for clustering. As

can be seen from the tables, both the clustering algorithms produced a substantial number of unique GO

terms that were common across datasets.

We also compared our gene signature model against a base line approach built using a k-nn classifier. We

used ten fold cross validation to impute functional annotations using k-nn and clusters obtained from our

model. For all the landmarks tested, our approach produced a higher classification accuracy than the k-nn

based approach, irrespective of ’k’ [See Additional File 2].

Finally, in order to validate the effectiveness of our approach, we compared our model, using tight

clustering with gene signatures (GSM), to an existing semi-supervized clustering (SSC) model. For the

SSC, the landmark genes were considered as ’must-link’ constraints. All the landmark genes were thus

clustered together in one cluster using the SSC. We then compared our model to the SSC by comparing the

number of unique GO terms found for each set of landmark genes. We used the Spellman and the Gasch

datasets for these experiments. The results of this comparison are shown in Figure 4. These indicate that

in general, our model does better for the Gasch dataset while the SSC model does better for the Spellman

dataset. The two models may be able to exploit different aspects of the underlying gene expression data.

Even for the same set of landmark genes, one model may do better in one dataset than in the other. This

is exemplified in the case of ’protein biosynthesis’ where the SSC model does better in the Spellman

dataset, whereas our model does better in the Gasch dataset (Figure 4). One difference between the two
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models is that the SSC forces the landmark genes in one cluster. This could lead to a large, less compact

cluster, especially in cases where there are a large number of landmark genes with varied expression

patterns. For example, for the Spellman dataset (Figure 5), the gene expression pattern of the landmark

genes correlates well and the SSC model performs better, whereas for the Gasch dataset (Figure 5) the

gene expression pattern of the landmark genes does not correlate well, and the GSM performs better.

Discussion

These results indicate that clusters using gene signatures have biological significance, and that many of

these gene associations are not found using clustering on the original microarray expression datasets. Each

set of landmark genes carries the potential of defining its own set of clusters from the same dataset.

To study this more closely, we examined several pairs of biological processes, i.e., the biological process that

was used for selecting the landmark genes and its corresponding common unique GO terms found across

datasets. For the Spellman and Gasch datasets, we analyze two of these biological processes (proteolysis

and electron transport) and some of their common unique GO terms. These are listed in Table 4.

Proteolysis and Transcription: The connection between proteolysis and transcription has been well

established. Proteolysis has been known to regulate transcription [25, 26]. Interaction between the two

processes is important for gene control and signaling pathways [27], and for the regulation of the cell

cycle [28].

Proteolysis and Phosphorylation: The two processes interweave and interact with each other resulting in

chromosome replication and segregation in budding yeast [29]. The two processes have also been linked to

the Cdc28 protein kinase complex and other proteins involved in the budding yeast [30]. Recently it was

reported that the human homolog of Mcm10 (a protein in yeast involved in DNA replication) is also

regulated by proteolysis and phosphorylation during the cell cycle [31]. One article explores how the

signaling molecule Hedgehog prevents the proteolyis (by phosphorylation) of Cubitus interruptus (Ci-155)

transcriptional activator [32] and another touches on how phosphorylation-induced proteolysis eliminates

unwanted by-products of protein kinases [33].

Electron Transport and Oxidative Phosphorylation: The relationship between these two processes has been

studied across organisms. The inhibitory effects of Salicylic Acid on both the mitochondrial functions were

presented in [34]. Salicylic acid inhibited mitochondrial electron transport which in turn inhibits oxidative

phosphorylation. A recent article has studied the neurological diseases in humans and found that they may

be caused by a defective electron transport system and its effect on oxidative phosphorylation [35]. Many
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other papers have also studied the relationship between these processes [36–39].

Electron Transport and ATP Synthesis: The relationship between these two processes has also been well

studied. Allakhverdiev [40] studied the role of these two interlinked processes on photodamage and repair

in Synechocystis. Electron transport is also tightly coupled to ATP synthesis in chloroplasts [41]. The

effect of the two processes on the frequencies and harmonics of yeast Saccharomyces cerevisiae were studied

in [42]. Faxen [43] and Belevich [44] study the mechanics of the intermediate steps between Electron

transport and energy requiring processes like ATP synthesis.

We chose the Biological Process Ontology to select the landmark genes. Nevertheless, other sources that

list genes belonging to a particular process or function can also be used. The biologist should also be able

to define their own set of landmark genes and use these as the co-ordinates for projection.

We showed that clustering on gene signatures using different sets of landmark genes creates new sets of

clusters that are different from the clusters obtained from the original microarray data. Genes in these new

clusters reveal biological insights that were not present in the clustering of the original microarray data.

We also showed that the new clusters are associated with biological terms that have some ties with the

genes used for landmark selection.

Conclusions

We have used the SigCalc algorithm to project the microarray data onto a subspace whose co-ordinates are

genes (called landmark genes), known to belong to a Biological Process. By changing the biological process

and thus the landmark genes, we can change this subspace. We have shown how clustering on this

subspace reveals new, biologically meaningful clusters which were not evident in the clusters generated by

conventional methods. Each unique choice of a biological process would result in a unique subspace and a

new set of clusters, enabling biologists to have more than one interpretation of the dataset. We have used

three datasets to show that many of these unique GO terms are common across datasets. We have

compared our model to an existing model, semi-supervized clustering, and shown that it compares

favorably to existing models exploiting some prior knowledge of the data. We have done a literature survey

and find strong evidence to support a link between the biological process used to select the landmark genes

and the newly found unique GO terms that are common across the datasets.
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Methods
Datasets

We use three yeast Saccharomyces cerevisiae datasets in our experiments. First, we use the cell cycle

dataset of Spellman [45] available in R [46], comprising of 5624 genes and 77 samples. Second, we use the

diauxic shift dataset of DeRisi [47] comprising of 6066 genes and 7 samples, and third the heat shock

dataset of Gasch [48] comprising of 6097 genes and 14 samples. We applied a filter based on variation in

gene expression, to focus our computations on informative genes across the samples. We selected genes

that had a standard deviation greater than 0.35, and selected only those genes that were annotated in the

biological process ontology of GO. The reduced datasets had 2288 genes for Spellman, 2794 genes for DeRisi

and 4508 genes for Gasch. We then normalized them to a mean of zero and a standard deviation of one.

SigCalc

We introduced the concept of gene signatures in our previous work [49] where it was used as a basis for

biological data integration. We formally define the signature calculation algorithm, SigCalc, in this

subsection. Let M represent the microarray table consisting of n genes and m samples. SigCalc takes as

input a microarray table M and a biological process. Using Gene Ontology, we find all the GO terms

associated with the chosen biological process, and then find all genes associated with these GO terms.

These genes are called landmark genes. For example, in yeast, the biological process “Protein Folding” is

associated with several genes: YHR189W, YCR024C, YMR097C, etc. The algorithm for calculating the

gene signatures, given a biological process, is shown in Algorithm 1 [see Appendix]. The SigCalc

algorithm would convert a microarray data matrix (Figure 6) into a gene signature matrix (Figure 7).

SigCalc projects the data onto a subspace, in which each coordinate corresponds to a landmark gene. The

projected genes are represented as points in a multi-dimensional subspace. If two genes are close to each

other in this projected subspace, then these two genes may show similar expression patterns relative to the

landmark genes. By varying the set of landmark genes, we are able to vary this subspace.

The SigCalc algorithm uses a distance function, dist, to measure the similarity between two gene vectors

in microarray M. A variety of distance metrics such as Euclidean and cosine distances, or some other

variants can be used. In our experiments we used the pearson correlation, a popular similarity metric [50]

to arrive at the distance. Given two gene vectors −→gi and −→gj , the pearson correlation is given by:

cor(−→gi ,
−→gj ) =

covariance(−→gi ,
−→gj )

√

covariance(−→gi ,
−→gi )× covariance(−→gj ,

−→gj )
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To calculate our gene signatures, we define our correlation distance function as:

dist = 0.5× (1− cor(−→gi ,
−→gj ))

The correlation distance thus ranges from zero to one. A distance of zero indicates perfect positive

correlation, and a distance of one indicates perfect negative correlation. A value of 0.5 would indicate no

correlation between the gene vectors. Given a set of landmark genes k and a microarray M containing n

genes and m samples, the SigCalc algorithm will return an n × k matrix, where each row represents a gene

signature, as shown in Figure 7.

Clustering algorithms used

We chose two popular algorithms, tight clustering that is based on k-means clustering and self organizing

maps (SOM) [5] to validate our Gene Signature model. The Tight Clustering algorithm [51] is a

re-sampling based algorithm, that uses k-means clustering, to return genes that are clustered together

consistently upon resampling. Re-sampling based methods have been found to return consistent

clusters [52, 53]. The Tight Clustering algorithm forms clusters that are stable and tight, and excludes

genes from clusters that are ‘noisy’ and only serve to dilute the cluster. It has been widely used in

microarray data clustering [54–57]. SOM is another clustering algorithm we used in our experiments. We

use the R [46] implementation of SOM.

Cluster validation

Cluster results can be validated using external or internal criteria. External criteria are preferred because

they provide a source to validate the clusters independent of the underlying datasets. We use the Gene

Ontology to provide this external validation. Gene Ontology validates clustering results by comparing the

genes in the clusters to genes known to be associated with specific biological functions. A “good” cluster

will have a statistically significant over-representation of genes belonging to a specific biological process, as

represented by a GO term. Our approach shows how the choice of landmark genes results in different sets

of clusters, and that each set of clusters is associated with different sets of biological processes (GO terms).

Significant GO terms from clustering microarray data

We partition the microarray data M (n genes × m samples) into N clusters (N = 100 for results

presented). We evaluate the biological significance of each cluster as follows: For a set of genes in a cluster,
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we evaluate if there are any GO terms that are over-represented than would be expected by chance. We

evaluate the probability of a set of genes in a cluster being associated with the same GO term by using the

hypergeometric distribution of the genes in the cluster. The probability of a cluster of size S containing x

genes belonging to a particular GO term, given that the reference dataset of N genes has a total of A genes

belonging to that particular GO term is:

Pr{X = x|N, A, S} =

(

A

x

)(

N −A

S − x

)

(

N

S

)

where X is a random variable representing the number of genes in a cluster, that are associated with a

particular GO term [58]. A cluster is considered to contain a significant GO term only if it has more than

two genes associated with a specific GO term, and has a p-value less than 0.01. We used the GOstat

package [23] for the hypergeometric test to find the set of statistically significant GO terms.

The set of significant GO terms for the original microarray clusters is the union of the significant GO terms

for all of the clusters. This set of GO terms will be called the Original GO terms, as shown in Figure 8.

Significant GO terms for a dataset using gene signatures

We build the gene signature matrix, for a selected biological process, by using SigCalc as given in

Algorithm 1 [see Appendix]. Next, we partition the n × k gene signature matrix into N clusters (N = 100,

i.e., the same number of clusters that were used for clustering the original microarray data). All other

parameters for the clustering algorithm were kept the same as were used to cluster the original microarray

data, as described in the previous section. This clustering of Gene signatures will be termed as Gene

Signature Clustering. The set of significant GO terms from the clusters is derived using the hypergeometric

distribution in the same way as described in the previous section. This set of significant GO terms

obtained by clustering gene signatures, associated with a set of landmark genes, will be called landmark

GO terms, as shown in Figure 9. The set of significant GO terms that are present in both the landmark

GO terms and the original GO terms are called overlapping GO terms, and the set of significant GO terms

that are present in the landmark GO terms but not in the original GO terms are called unique GO terms.

Unique GO terms common across datasets

Next, we determined if there were unique GO terms that were common across datasets. To ensure that the

two datasets were comparable, we selected only those genes that were common to both datasets. For
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example, when comparing the Spellman (2288 genes) and Gasch (4508 genes) datasets, there were 2038

genes that were common to both datasets. So for this comparison, the Spellman dataset comprised 2038

genes × 77 samples, and the Gasch dataset comprised 2038 genes × 14 samples. This also ensured that, for

a biological process, the same set of genes would be picked as landmarks for both datasets. For each

dataset, we found the unique GO terms for a set of landmark genes, and then compared the two sets to

determine which unique GO terms were common across datasets.

Source code availability and requirements

Project name: Landmark gene-guided clustering.

Project home page: http://www4.ncsu.edu/∼pchopra/landmarks.html

Operating system: Windows

Programming languages: R (download at http://cran.r-project.org/ ). All R packages for Gene Ontology

can be downlaoded at Bioconductor (http://www.bioconductor.org/).

Licence: The R source code is freely available under the GPL license. The source code can be obtained as

as additional material [see Additional file 1]. This source code is provided only for academic use. By using

the code, the user agrees to cite the main paper if results obtained from this code are used in the

manuscript.
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Appendix
Input: Microarray table M (n genes × m samples ), and a Biological Process in Gene Ontology

(GO), X.

Output: Set of gene signatures S =
−→
sig(g1), . . . ,

−→
sig(gn).

List all the genes linked to X in Gene Ontology. This set of k genes are the landmarks and will be
represented by L = {l1, . . . , lk}.
foreach gene gi in M do

foreach gene lj in L do

dj ← dist(−→gi ,
−→
lj )

end
−→
sig(gi)← [d1, d2, . . . , dk]

end

Algorithm 1: SigCalc: Signature Computation Algorithm.
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Figures
Figure 1 - Comparison of microarray expression data with gene signatures for genes that clustered
together using gene signatures.

Gasch dataset: Genes associated with multi-organism process (GO:0051704) were clustered together.

Figure 2 - Comparison of microarray expression data with gene signatures for genes that clustered
together using gene signatures.

Gasch dataset: Genes associated with reproduction (GO:0000003) were clustered together.

Figure 3 - Number of GO terms for varying number of clusters.

For each landmark, a number of unique GO terms are found irrespective of the number of clusters.

Figure 4 - Comparison of unique GO terms found using gene signatures versus those found using
semi-supervized clustering (SSC) for the Spellman and Gasch datasets.

For the semi-supervized clustering (SSC), the landmark genes were considered as ’must-link’ constraints.

SSC1 denotes the number of unique GO terms found by using landmark genes as constraints in SSC.

GSM1 denotes the number of unique GO terms found by using the gene signature model. SSC2 denotes

the number of unique GO terms found for SSC if we remove the largest cluster (containing all the

landmark genes) from analysis. GSM2 denotes the number of unique GO terms found using the gene

signature model if we remove the largest cluster from analysis. The results for other landmarks are shown

in Figure 3 in Additional File 2.

Figure 5 - Comparison of gene expression patterns in the largest cluster of semi-supervized clustering
(SSC) versus the gene signature model (GSM) for the Gasch dataset using landmark genes associated
with ’proteolysis’.

Figure 6 - Microarray expression data matrix

The selected landmark genes are highlighted.
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Figure 7 - Gene signatures derived from microarray data using SigCalc

Gene signature matrix, where each row represents a gene signature.

Figure 8 - Significant GO terms in microarray data

The dots indicate Significant GO terms found by performing clustering on microarray data (i.e., original

GO terms).

Figure 9 - Significant GO terms in microarray data and in gene signatures

Shows a comparison of Significant GO terms found by clustering gene signatures (i.e., landmark GO terms)

with the original GO terms.

Tables
Table 1 - Details of overlaps between significant GO terms found by original clustering of microarray
data, and those found by using gene signature clustering for the Spellman dataset.

Biological process used Number of Number of Number of Number of
for landmark genes Landmark Original Overlapping Unique

Genes GO terms GO terms GO terms
proteolysis 51 182 120 41
electron transport 20 182 126 44
regulation of transcription 100 182 126 41
protein biosynthesis 194 182 101 20
carbohydrate metabolism 121 182 142 58
signal transduction 52 182 121 53
ubiquitin-dependent protein catabolism 40 182 129 61

16



Table 2 - Common Unique GO Terms between datasets (taken two at a time), using Tight Clustering algorithm.

Spellman-Gasch (2038 genes) Gasch-DeRisi (2474 genes) Spellman-DeRisi (1408 genes)
Biological process Unique GO terms Unique GO terms Unique GO terms
used to get Spell- Gasch Common Gasch DeRisi Common Spell- DeRisi Common
landmark genes -man (p-value) (p-value) -man (p-value)
proteolysis 28 89 12 (7.7x10−6) 117 80 27 (1.2x10−7) 32 17 3 (3.4x10−2)
electron transport 28 89 9 (1.3x10−3) 121 125 28 (6.5x10−4) 47 59 15 (1.6x10−6)
regulation of transcription 23 57 5 (1.3x10−2) 83 76 20 (1.6x10−6) 31 24 5 (2.8x10−3)
protein biosynthesis 32 85 7 (2.6x10−2) 101 83 20 (1.4x10−4) 21 53 1 (3.2x10−1)
carbohydrate metabolism 22 72 7 (1.4x10−2) 97 81 16 (3.6x10−3) 28 33 1 (3.6x10−1)
signal transduction 43 68 23 (1.0x10−15) 76 98 22 (1.6x10−6) 44 28 8 (1.6x10−4)
protein folding 29 72 10 (6.3x10−5) 110 81 31 (4.9x10−11) 24 32 4 (1.8x10−2)
intracellular protein transport 38 79 9 (5.1x10−3) 137 83 25 (7.6x10−5) 33 43 7 (2.4x10−3)
lipid metabolism 43 73 17 (1.3x10−8) 97 85 27 (6.4x10−9) 32 27 4 (2.6x10−2)
ribosome biogenesis 66 94 22 (4.4x10−7) 111 124 22 (1.2x10−2) 55 30 9 (2.4x10−4)

1
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Table 3 - Common Unique GO Terms between datasets (taken two at a time), using SOM algorithm.

Spellman-Gasch (2038 genes) Gasch-DeRisi (2474 genes) Spellman-DeRisi (1408 genes)
Biological process Unique GO terms Unique GO terms Unique GO terms
used to get Spell- Gasch Common Gasch DeRisi Common Spell- DeRisi Common
landmark genes -man (p-value) (p-value) -man (p-value)
proteolysis 28 90 1 (1.3x10−1) 90 56 17 (4.4x10−6) 29 49 8 (4.6x10−4)
electron transport 55 76 23 (1.1x10−11) 97 52 17 (4.13x10−6) 36 57 3 (2.4x10−1)
regulation of transcription 39 79 15 (5.0x10−7) 69 45 8 (9.8x10−3) 32 40 1 (2.9x10−1)
protein biosynthesis 64 71 19 (2.07x10−7) 77 69 10 (2.8x10−2) 20 72 2 (2.9x10−1)
carbohydrate metabolism 37 73 11 (1.3x10−4) 76 60 13 (4.2x10−4) 42 45 2 (2.5x10−1)
signal transduction 74 74 14 (2.5x10−3) 92 61 10 (3.7x10−2) 45 36 6 (1.9x10−2)
protein folding 47 71 5 (1.7x10−1) 77 44 5 (1.4x10−1) 39 36 4 (9.6x10−2)
intracellular protein transport 41 98 16 (3.5x10−6) 113 51 18 (6.0x10−6) 42 46 6 (1.4x10−2)
lipid metabolism 47 83 9 (2.3x10−2) 84 64 12 (5.5x10−3) 73 37 0 (1.3x10−2)
ribosome biogenesis 40 71 19 (1.6x10−11) 99 77 9 (1.4x10−1) 27 55 0 (9.7x10−2)

1
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Table 4 - Some examples of biological processes used to select landmark genes and the common
unique GO terms found across the Spellman and Gasch datasets

Biological Pro-
cess

Common Unique GO terms

transcription
transcription, DNA-
dependent
phosphorylation
energy reserve metabolism
microtubule-based process
sporulation

Proteolysis sporulation (sensu Fungi)
cellular lipid metabolism
regulation of transcription
reproductive sporulation
ribosomal large subunit ex-
port from nucleus
regulation of transcription,
DNA-dependent
oxidative phosphorylation
ATP synthesis coupled elec-
tron transport
ATP synthesis coupled elec-
tron transport (sensu Eukary-
ota)

Electron Trans-
port

cellular respiration

DNA strand elongation
phosphorylation
phosphorus metabolism
phosphate metabolism
aerobic respiration

Additional Files
Additional file 1

R source code file (size: 1.5 MB)

Additional File 2

Supplementary Material for ’Microarray data mining using landmark gene-guided clustering’ (type: pdf

file, size: 53 KB)
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